

Verifiering av analytisk modell för valvstabilitet BeFo-projekt 409

Fredrik Johansson, KTH

Mikael Svartsjaern, ITASCA Consultants AB

Kort historik om valvbildning

Akvedukt Pont du Gard med tryckta bågar i dåtida romerska Galileen, nutida södra Frankrike) (CC-BY-SA 2.0 Pont du Gard Oct 2007 - Akvedukt – Wikipedia)

- Konsten att använda tryckta valv anses ha utvecklats redan under romarriket.
- Deras akvedukter byggda med tryckta valv är världskända.
- Kunskapen om användandet av tryckta valv inom byggnadskonsten var emellertid i första hand empirisk.

Kort historik om valvbildning

Sir Isaac Newton 1642-1727, en av mekaniken grundare. Isaac Newton – Wikipedia Utvecklandet av mekaniken under 1700talet och 1800-talet innebar att den teoretiska kunskapen om tryckta valv ökade.

Kort historik om valvbildning inom bergmekaniken

Tunnelportal med bärande valv (Foto: Fredrik Johansson)

- Inom bergmekaniken började grundläggande teori att försöka tillämpas på 70- och 80-talet för att dimensionera förstärkning med hänsyn till valvstabilitet.
- Principerna för dimensionering av förstärkning var emellertid i första hand empiriska.

Valvbildande bultning –Bjurström och Heimersson 1975

Principerna för valvbildande bultning med förspända bultar (Bjurström och Heimersson 1975)

Genom att på ett regelbundet sätt bulta med radiellt placerade <u>förspända</u> bultar kring ett bergrum i sprickigt blockigt berg anser man det möjligt att åstadkomma ett bärande valv längs bergkonturen i princip enligt fig 16. Denna bärande tryckbåge anses vara ett resultat av flera olika mekanismer i samspelet mellan bult och berg, bl a spelar olika typer av kilverkan och tvärtöjning i berget tvärs bulten roll, liksom det förhållandet att bultningen förhindrar berget att röra sig in i bergrummet. Detta har till följd att den uppsprickning och uppluckring som har sin grund i spänningsomlagring vid rummets utbrytning reduceras.

- s ≾ 3 e Om taket säkras med band, armerad sprutbetong o dyl kan detta mått ökas upp till 6 e, beroende på säkringens typ
- representativt sprickavstånd (= medelavst. mellan sprickor inom visst på likartat sätt uppsprucket område). Se fig 16
- Resulterar i omfattande förstärkning.
- Empirisk, säkerheten delvis okänd!

Teori för valvbildning i sprickigt berg – Stille 1980

Gammal stenbro i Dalarna med tryckta valv (Foto: Johan Spross)

- Stille (1980) utarbetade teorier för valvbildning i sprickigt hårt berg.
- Han kom fram till att tre typer av brottmekanismer existerar för valv:
 - -Glidning i sprickor
 - -Krossning av det intakta berget
 - -Rotation av block

Teori för valvbildning i sprickigt berg – Stille 1980

Rad av bergblock med höjden B och spännvidden L. H_q och V_q är horisontella respektive vertikala upplagskrafter (Baserat på Stille 1980).

- Vanligtvis är glidning dimensionerande!
- Beaktar inte samverkan med förstärkning!

Baserat på utvecklad teori föreslog Stille (1980) att den maximala lasten som en rad av bergblock kan belastas med kan bestämmas med följande ekvationer:

Rotation
$$q_{\text{max}} = \frac{8 \cdot H_q \cdot f_{\text{max}}}{L^2}$$

Glidning
$$q_{max} = \frac{2H_q tan\phi}{L}$$

Krossning
$$q_{\text{max}} = \frac{8 \cdot H_q}{L^2} \cdot k \cdot B$$

Bygger på kraftjämvikt mellan pådrivande och mothållande skjuvkrafter längs en spricka för ett element i valvet.

Resultanten för trycklinjen i valvet kan delas upp i en skjuvkraft parallell med sprickan T_R och en normalkraft vinkelrätt mot sprickan N_R enligt:

$$T_R = R \cdot \sin(90 - \alpha_{Dis}) \tag{1}$$

$$N_R = R \cdot \cos(90 - \alpha_{Dis}) \tag{2}$$

Förstärkning med sprutbetong

Sprutbetongen antas mobilisera ett mothållande tryck:

$$\sigma_{3,SB} = \frac{f_{cd} \cdot t}{r} \qquad (3) \qquad \text{där} \qquad S_{SB} = \sigma_{3,SB} \cdot L_{Dis} \qquad (4)$$

 $S_{\rm SB}$ kan delas in i en skjuvkomposant parallell med sprickan, $T_{\rm SB}$, och en normalkomposant vinkelrätt sprickan, $N_{\rm SB}$, enligt:

$$T_{SB} = S_{SB} \cdot \sin \alpha_{Dis} \tag{5}$$

$$N_{SB} = S_{SB} \cdot \cos \alpha_{Dis} \tag{6}$$

Den totala skjuvkraften, T_{TOT} , och totala normalkraften, N_{TOT} , över sprickan kan tecknas:

$$T_{TOT} = T_R + T_{SB} \tag{7}$$

$$N_{TOT} = N_R + N_{SB} \tag{8}$$

Observera att T_{SB} är negativ

Förstärkning med bergbult:

Enligt BBK 04 kan följande ekvation användas för att beräkna mothållande skjuvspänningar i en spricka med bultar:

$$f_f = \left(\rho \cdot f_{st} + \sigma_{fc}\right)\mu \tag{9}$$

där:

 $f_{\rm f}$ =sprickans skjuvhållfasthet μ =sprickans friktionskoefficient ρ =Förhållandet mellan bultarea och sprickarea $f_{\rm st}$ =bultens flytspänning $\sigma_{\rm fc}$ =tryckspänningen över sprickan

Inverkan från lutande bultar:

Multiplicera p med:

För att få krafter används:

$$\begin{split} T_B &= f_f \cdot A & (11) \\ N_{TOT} &= \sigma_{fc} \cdot A & (12) & \overset{\text{där A=sprickans area}}{A_s = \rho \cdot A \cdot n} & (12) & \overset{\text{där A=sprickans area}}{A_s = bultens area} & n = \frac{L_{Dis} \cdot 1}{s^2} \\ \mu &= tan\phi & (14) & s = avstånd mellan bultar \end{split}$$

Ekv. (11)-(14) in i (10) ger:

$$T_{BF} = \left[N_{TOT} + \left[sin\beta + \frac{cos\beta}{\mu} \right] \cdot n \cdot A_s \cdot f_{yd} \right] tan\phi$$

Villkor vid dimensionering:

 $T_{\rm BF} \ge T_{\rm TOT}$ I varje punkt längs trycklinjen i valvet!

		Lutning																				1
		trycklinje α_{Valv}		0.1-1																		Design
x (m)	y (m)	[0]	$\alpha_{Dis}[0]^*$	β[o]	H (kN)	V (kN)	R (kN)	σ _R (kPa)	T _R (kN)	N _R (kN)	L _{Dis} **	S _{SB} (kN)	N _{SB} (kN)	T _{SB} (kN)	T _{tot} (kN)	N _{tot} (kN)	n _{bolts}	F _{Bult} (kN)	T _{BF} (kN)	SF=T _{BF} /T _{tot}	Möjlig?	OK?
0	2,0	0,0	60,0	30,0	1863	0	1863	621	932	1614	1,7	197	98	-170	761	1712	0,5	96	1410	1,9	Ja	Ja
0,5	2,0	2,0	58,0	32,0	1863	66,25	1864	621	989	1581	1,9	213	113	-181	808	1694	0,5	104	1406	1,7	Ja	Ja
1	2,0	4,1	55,9	34,1	1863	132,5	1868	623	1046	1547	2,0	230	129	-191	855	1676	0,5	113	1404	1,6	Ja	Ja
1,5	1,9	6,1	53,9	36,1	1863	198,75	1874	625	1104	1514	2,2	248	146	-201	903	1661	0,6	122	1404	1,6	Ja	Ja
2	1,9	8,1	51,9	38,1	1863	265	1882	627	1161	1481	2,4	267	165	-210	951	1646	0,6	131	1404	1,5	Ja	Ja
2,5	1,8	10,1	49,9	40,1	1863	331,25	1892	631	1219	1448	2,5	287	185	-219	999	1633	0,7	140	1406	1,4	Ja	Ja
3	1,7	12,0	48,0	42,0	1863	397,5	1905	635	1276	1415	2,7	307	206	-228	1048	1621	0,7	150	1409	1,3	Ja	Ja
3,5	1,6	14,0	46,0	44,0	1863	463,75	1920	640	1333	1382	2,9	329	228	-237	1097	1610	0,8	161	1413	1,3	Ja	Ja
4	1,4	15,9	44,1	45,9	1863	530	1937	646	1391	1349	3,1	351	252	-245	1146	1601	0,8	172	1419	1,2	Ja	Ja
4,5	1,3	17,7	42,3	47,7	1863	596,25	1956	652	1448	1316	3,3	375	278	-252	1196	1593	0,9	184	1426	1,2	Ja	Ja
5	1,1	19,6	40,4	49,6	1863	662,5	1978	659	1505	1282	3,5	400	305	-259	1246	1587	0,9	196	1435	1,2	Ja	Ja
5,5	0,9	21,4	38,6	51,4	1863	728,75	2001	667	1563	1249	3,8	426	333	-266	1297	1582	1,0	209	1445	1,1	Ja	Ja
6	0,7	23,1	36,9	53,1	1863	795	2026	675	1620	1216	4,0	454	363	-273	1348	1579	1,0	222	1457	1,1	Ja	Ja
6,5	0,5	24,8	35,2	54,8	1863	861,25	2053	684	1678	1183	4,3	483	395	-279	1399	1578	1,1	236	1471	1,1	Ja	Ja
7	0,3	26,5	33,5	56,5	1863	927,5	2081	694	1735	1150	4,5	514	429	-284	1451	1578	1,2	252	1486	1,0	Ja	Ja
7,5	0,0	28,1	31,9	58,1	1863	993,75	2112	704	1792	1117	4,8	547	464	-289	1503	1581	1,3	268	1504	1,0	Ja	Ja
*) På grun	*) På grund av geomterisk begräsning kan glidning inte inträffa i punkt x,y vid vinklar på αdis som understiger 33°																					
**) Maxlä	ngd på spr	icka uppgår till 3,	0 m basera	d på geom	etrisk begr	änsning.																
-	122	l.D.	A		af a sala		2															
4 -	155	Krd	Assumeu	unckness			3				Ldis, max=	0,3										
B=	15	m									α _{dis, max} =	25	Č.									
f=	2	m	Bolt spaci	ng=		1,96	m															
Ha=	1863	kN/m	fst=			435	MPa															
Va=	994	, kN/m	φ25=			491	mm2															
R=	2112	, kN/m	Compress	ive streng	th shotcret	21.3	MPa															
			Thickness	shotcrete		0,08	m															
α=	60	[°]	radius of t	unnel		15	m															
φ=	37	[°]	σ ₃ , shotcr	ete (MPa)		0,11	MPa															

Modellens begräsningar

- Antar att sprutbetongen är idealt tryckt och tar inte hänsyn till inverkan från tvärkraft och moment.
- Antar att trycklasten i valvet enbart fördelas i den antagna tryckta bågen.
- Tar inte hänsyn till oregelbundheter som kan uppstå efter sprängning, utan antar ett jämnt tunneltak.
- Tar inte hänsyn till dilatation i sprickorna.

- Syftet med projektet var att med hjälp av tvådimensionella numeriska beräkningar i UDEC verifiera den analytiska modellens tillämpbarhet för beräkning av valvstabilitet.
- Detta gjordes genom att analysera den analytiska modellens modellosäkerhet, definierad som:

SF_{analytisk modell} / SF_{UDEC först. strax innan brott i analytisk modell}

Metodik

- Beräkningarna utgår från en tunnelgeometri baserad på en typsektion med en bredd på 15 m
- Blockstorleken i bergmassan antas till 1 m
- Elastiska förhållanden i blocken
- Materialmodell f
 ör sprickorna antas vara Mohr-Coulomb
- Bergtäckning lika med halva spännvidden
- Beräkningar genomförs i UDEC med två korsande sprickplan med vinklarna 0°, 15°, 30°, 45°, 60°, 75°. Totalt 6 st olika modeller.

Definition av brott i UDEC

- Dimensionerande förstärkning (SF~1.0) definieras i UDECmodellerna som den minsta förstärkning för vilken ingen signifikant kilrörelse sker.
- Signifikant kilrörelse definieras som punkten då deformationen ökar kraftigt vid en liten minskning av förstärkningen.

Utvärderade fall

- Totalt 6 st "fall" bestående av 2 återkommande sprick-grupper, orienterade vinkelrätt varandra analyserades.
 - Fall 1 & 4 (0/90 & 45/45) är unika.
 - Fall 2 & 6 (15/75 & 75/15) är spegelbilder.
 - Fall 3 & 5 (30/60 & 60/30) är spegelbilder.

Materialegenskaper och indata - berg

٠

- Elastisk bergmassa:
 - *E*=25 GPa - ν= 0.25

Elasto-Plastiska sprickor:

- *c*= 0 MPa
- $\emptyset = 37 \circ$
- $\Psi = 0^{\circ}$
- *Ks* = 10 GPa/m
- *Kn* = 100 GPa/m

Gravitativt spänningstillstånd (minst fördelaktigt för valvverkan) > $\sigma_v = \rho gh$ > $\sigma_H = \sigma_h = \frac{v}{(1-v)} \sigma_v$

Materialegenskaper och indata - förstärkning

Sprutbetong

Parameter	Värde	Kommentar/ Källa
ρ	2300 kg/m ³	Betong
V	0.25	Betong
E	11.7 GPa	FUT
Yc	21.3 MPa	FUT
Yt	2.7 MPa	FUT
Yt _{res}	0 MPa	FUT
Vidhäftning	330 MPa	Fullständig vidhäftning

Bult

Parameter	Värde	Kommentar/ Källa
ρ	7800 kg/m ³	Stål
D _{bult}	25 mm	
D _{hål}	32 mm	
Kohesion ingjutning	0.35 MPa	Cement
Friktionsvinkel ingjutning	32°	Cement
\mathcal{E}_{crit}	4.3 %	FUT
Yt	214 kN	FUT
E	183 GPa	FUT

Typmodeller som analyserats

- Enbart sprutbetong
 - Analytisk modell med SF=1,0 gav 5-12 cm sprutbetong beroende på sprickstupning
- Enbart bult
 - Analytisk modell med SF=1,0 gav s=1,1 m
- Kombinerad förstärkning
 - Analytisk modell med SF=1,0 gav s=1,8-2,0 m med
 5-8 cm sprutbetong beroende på sprickstupning

Resultat Sprutbetongmodeller

Resultat Sprutbetongmodeller

Resultat Sprutbetongmodeller

Sammanfattning resultat sprutbetongmodeller

- För modeller med enbart sprutbetong bedöms dimensionerande förstärkning i UDEC vara relativt okänslig gällande sprickorientering med undantag för fall 1 (0/90) vilket är självstabiliserande.
- Fall 2-6 bedöms bli ostabila vid mellan 4 och 5 cm sprutbetong (15/75, 30/60, 45/45, 75/15 och 60/30).

Resultat Bultmodeller

Resultat Bultmodeller

Exempel på spänningsfördelning innan brott.

Sammanfattning resultat bultmodeller

- För fall med enbart bult syns större variation i krav på c/c avstånd än motsvarande krav för sprutbetongtjocklek.
- Även mellan "speglade" fall skiljer sig resultaten något – detta bedöms bero på hur bultarna låser mot specifika kilar/block.
- c/c avstånd vid dimensionerande förstärkning är för stupningar mellan 30-60° 2.1-2.7 m och för 15/75° ca 3.0 m.

Resultat kombinerade modeller

Resultat kombinerade modeller

Sammanfattning kombinerade modeller

- För de kombinerade modellerna användes en "Q-klass" högre c/c avstånd jämfört med sista stabila konfigurationen i bultmodellerna och sprut-betongens tjocklek varieras.
- Samtliga fall är stabila vid en tjocklek av 2 cm

Beräkning av modellosäkerhet

Fall	Modellosäkerhet bult	Modellosäkerhet sprutbetong	Modellosäkerhet bult+sprutbetong
2 (15/75) + spegel	0.9	0.9	0.9
3 (30/60) + spegel	0.6	0.6	0.6
4 (45/45)	0.5	0.6	0.7

- Jämfört med UDEC är den analytiska modellen något konservativ.
- Förstärkningsmängd rimlig

Förstärkningsklass analytisk lösning s=1,8-2,0 m med 5-8 cm sprutbetong (sprickorientering inverkar)

> Förstärkningsklass Q=4 [uppskattad] s=2,1 m med 6-9 cm sprutbetong (oberoende av orientering)

Slutsatser

- För det studerade fallet är den analytiska modell konservativ.
- Modellosäkerheten varierade mellan 0,9-0,5 beroende på sprickornas stupning
- Orsaken till denna variation indikeras i de numeriska modellerna som bl.a. visade att:
 - > Bergmassans har en förmåga att skapa (flera) bärande valv i bergmassan ovanför tunneln.
 - > Komplexiteten på hur krafter och moment fördelas i förstärkningselementen och hur de samverkar med bergmassan är stor.
 - > Den numeriska modellen är känslig för var bultarna placerades i det kritiska blocket, vilket påverkades av bultarnas c/c-avstånd (antal).

Behov av fortsatta analyser

- Följande projekt analyserade enbart modellosäkerheten för en ytlig tunnel med bergtäckning Bt=B/2
- Ytterligare studier behövs för att analysera modellosäkerheten för andra förhållanden än ytliga tunnlar, t.ex.:
 - För djupare belägna tunnlar med en löskärna.
 - För bergmassor med enstaka mer distinkta svaghetsplan med lägre hållfasthet kombinerat med en blockig bergmassa.
 - Vad händer vid fyllda sprickor och eventuellt svälltryck.
 - 3D förhållanden såsom portaler.
- Lämpligt för framtida exjobb?

