Underground Construction, Geology and Geotechnical Risk

Presentation at the 2019 Bergmekanikdagen Sweden

Dr. Priscilla P. Nelson
Professor and Department Head
Department of Mining Engineering
pnelson@mines.edu
The earth is finite, and natural resources are limited.

By 2050 at the current rate of growth and with everyone at the U.S. standard of living (e.g., little recycling), we would need many earths worth of resources.
In our future: not only population growth, but increased urban growth

https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
Major World Cities: 3% of the world's population lived in cities in 1800, rising to over 60% by 2020.

In 1950, there were 83 cities with populations exceeding one million; by 2007, this number had risen to 468.
Finite Resources

Current rate of placement –
>>1 Ton of new concrete per person per year worldwide. Almost no recycling!
How will our cities grow?

Global expectation is for Compact Cities – growing up and down.
We need to identify and communicate the value of infrastructure and the subsurface.

- The U.S. infrastructure may be valued at between $50 and $80 Trillion, perhaps more.
- This is equivalent to $250k to $300k for each US citizen as his/her birthright.
- The nation’s infrastructure is a pre-investment upon which the economic engine runs, the quality of life is assured, and career potential of each individual is leveraged.
Our future urban lives will increasingly rely on the underground. We need geologic perspectives to best provide for the cities of the future.
Infrastructure Investment Drivers

With the growth of population and megacities, we need integrated planning for improved space utilization.

And we must realize that:

• Urban growth will extend infrastructure into deeper, fragile and challenging underground environments.
• Sustainability, terrorism and security drive new constraints for retrofit and new infrastructure system design.
• We are experiencing increasing frequency and impact of extreme events.

For all of which underground engineering can be a solution.
UG Cost Increases over past Decades

Underground construction costs have escalated in past decades.

The main driver of increased cost has been management of geologic risks.

Risk = Probability x Consequences (or Impact)

What geologic problems drive risk and cost increases, and what can we do about them?
How can Costs and Risks be Reduced?

• Risk avoidance
• New technologies and methods
• Better subsurface characterization
• Better management of water
• Decisions and designs based on sustainability
• Risk awareness, assessment and management
• Engineering forensics
• Risk communication and willingness to accept and share risk
Risk Avoidance: New York City

Spatial Chaos in the USA

Consider underground zoning
We need spatial thinking, integrated planning for above and below ground

1916/1917 Beekman Street Subway, NYC
Japan experience

- 2001 Deep Underground Utilization Law: land ownership rights in populated areas (e.g., Tokyo, Osaka) only extend to 40 meters below ground, or 10 m below a deep foundation.
- In the case of public use, no compensation to the land owner is required.
- 1st projects using the law: Underground water mains in Kobe, and the Tokyo Gaikan Expressway.
How can Costs and Risks be reduced?

- Risk avoidance
- New technologies and methods
- Better subsurface characterization
- Better management of water
- Decisions and designs based on sustainability
- Risk awareness, assessment and management
- Engineering forensics
- Risk communication and willingness to accept and share risk
New Technologies and Methods

- Industry/owners partner with universities to develop new technologies and methods including new ways to cut rock (e.g., laser, microwave)
- Incentivize application of new technologies
- Proactively implement ground improvement
- Design for sustainability and maintainability
- Safety innovations
- Integrated geophysics and remote sensing for spatial and temporal variations
- Rethink materials/methods (e.g., concrete, blasting)
Assess technological innovation

Change of Support Systems (Road Tunnel)

- Ribs and Lagging
- NATM (shotcrete, lattice, rockbolts)

Number of Projects

Year

Number of Site Rib & Woods NATM (Shotcrete & Rockbolt)
How can Costs and Risks be reduced?

- Risk avoidance
- New technologies and methods
- **Better subsurface characterization**
- Better management of water
- Decisions and designs based on sustainability
- Risk awareness, assessment and management
- Engineering forensics
- Risk communication and willingness to accept and share risk
Better Subsurface Characterization

Yep!

That's definitely a rock!
Better Subsurface Characterization
Better Subsurface Characterization

• Continuing Geologic Issues
 – Shallow cover, varying depth to rock
 – Settlement, subsidence
 – Weathered rock and rock mass (incl. karst)
 – Structure, incl. shears/faults
 – Time dependency and progressive deterioration in geologic materials
 – Abrasiveness and stickiness
 – Aggregate reactions and concrete durability
 – Stresses and redistribution
Rock Mass Issues

- Scale effects
- Rock mass ratings
 - Uninformed and inconsistent use
 - Limited validation of empirical correlations
- Excavation shapes and dimensions
- Validation of computational models
- In situ stress state – geologic framework vs point measurements
- Spatial variability of rock mass structure
Subsurface Characterization: Non-contact Methods

• Many geophysical techniques are misused and underused.
• Need integrated application of a variety of geophysics and remote sensing (including LiDAR) methods to permit detection and time-dependent assessment of underground materials.
• Need to understand spatial and temporal variations that affect performance of existing facilities for sustainable design and operations.

Our conventional site investigations should be confirmatory rather than exploratory.
The Civil Industry should be partnering with Mining and Geology

- Geologic perspective on risk.
- Potential for real spatial understanding of rock mass and water inflow and pressures variability.
- Better understanding of time effects – possibility of developing sustainability performance information.
- Low FS, high slopes, tall caves, deep shafts - possibility to observe and learn from failures.
- Environmental issues in common, including issues of mine closure.
We are going deeper

Expect impacts from new rock masses at higher stress

![Graph showing the depth of deep shafts over time with data points for coal mines and civil shafts.](image-url)
Subsurface Characterization and Computational Modeling

• Simplify and Validate
 – This is the era of information: sensing and measurements
 • Are we gathering enough data?
 • Are we pooling data to improve the profession’s understanding?
 • Has our computational capabilities far outrun our ability to know input parameters?

 We must make opportunities to validate design assumptions and performance prediction

• Continuing problems
 – Time-dependency
 – Scale-dependency
 – Groundwater (volume and pressures)
How can Costs and Risks be reduced?

- Risk avoidance
- New technologies and methods
- Better subsurface characterization
- Better management of water
- Decisions and designs based on sustainability
- Risk awareness, assessment and management
- Engineering forensics
- Risk communication and willingness to accept and share risk
Hudson and Manhattan Railroad Company
http://www.tmk.com/books/hmdinner/

Department of Mining Engineering
Soft Ground Tunneling

Earth Pressure Balance Mining (EPBM)s Machines

Slurry Mining Machines
Microtunneling
Better Management of Water

- Find it and pre-remEDIATE
- Resource conservation
- Environmental impacts (bio-geo-chemical)
- Construction impacts (safety, equipment)
- Performance of installed support
 - Waterproofing
 - Drained vs undrained
- Operational impacts – long term deterioration
- Piping - ground loss

Need to consider volume, flow rate, quality, pressure, and changes over time.
How can Costs and Risks be reduced?

- Risk avoidance
- New technologies and methods
- Better subsurface characterization
- Better management of water
- **Decisions and designs based on sustainability**
- Risk awareness, assessment and management
- Engineering forensics
- Risk communication and willingness to accept and share risk
Decisions and Design Based on Sustainability

• Long-term vs first cost and design for reuse:
 – Accepted methods to evaluate sustainability
 – Valuation methods for existing infrastructure
 – Valuation for underground space (beyond resource extraction)
 – Data base development
 • System management and performance
 • Construction and rehabilitation costs and time
 – Environmental impact management
 – Bio-driven deterioration of concrete
How can Costs and Risks be reduced?

- Risk avoidance
- New technologies and methods
- Better subsurface characterization
- Better management of water
- Decisions and designs based on sustainability
- Risk awareness, assessment and management
- Engineering forensics
- Risk communication and willingness to accept and share risk
Risk-based evaluation of impacts

- Risk registries and mitigation planning – need a consensus method of risk analysis
- Geologic analysis of “geoproblem event” frequency for stochastic assessment of risks
Geoproblem Events

Collect data to inform statistical probability and consequences of encountering Major Geotechnically-Driven Stoppages in underground excavations

• Spatial frequency, km/event
 o Typical event sources: excavation and equipment, ground control, water.
• Temporal frequency, hrs/event
• Duration distribution
• Quality/performance of contractor

Not everything about a specific project is “one-off”.
Engineering Forensics

Learning from past experience (3 collaborating sectors: academe, industry, owners) – in spite of liability issues

• Analysis
 ▪ Test assumptions made for design
 ▪ Evaluate decisions made for construction
 ▪ Influence of operation and management approaches on life cycle performance

• Retrospective assessment of sustainability and life cycle engineering effectiveness
How can Costs and Risks be reduced?

- Risk avoidance
- New technologies and methods
- Better subsurface characterization
- Better management of water
- Decisions and designs based on sustainability
- Risk awareness, assessment and management
- Engineering forensics
- Risk communication and willingness to accept and share risk
Risk communication and willingness to accept risk

- Return to era of the strong owner – building and integrating owner staff engineering knowledge and judgment
- Encourage long-term view of responsibilities
- Connect with the public and children – social license
And as we move forward…

• Urban underground space in the future will be much more than tunnels and stations.
• Prepare for the creative use of urban underground space that our society will demand
 – Shapes/depths
 – Partnering with planners and architects
 – Human occupancy (social acceptance, spatial referencing, emergency response, aging population).
• Develop and adopt new technologies that will decrease costs and increase flexibility and quality of our urban spatial resources.
Summary of Issues for Risk Reduction

- Rethink materials and methods.
- Advance methods for subsurface characterization.
- Extend applications for pre-construction ground improvement methods.
- Improve framework for understanding risk and spatial variability of geologic conditions.
- Improve understanding of assessment and redistribution of in situ stress.
- Focus on validation of computational models.
- Improve understanding of 3-D fracture across scales.
Summary of Issues for Risk Reduction

• Advance excavation methods including drill/blast, lasers and other innovative technologies methods.
• Acquire data to support rational and long-term sustainable design and LCE, including time-dependency.
• Establish a market value of underground space.
• Advance knowledge about how the underground can minimize risks from extreme events.
• Develop new understanding of urban underground design for the public.
Urban Resilience

Underground Infrastructure can be the medicine for our cities in the future.